分类
Asia Noise News Environment

马来西亚的噪音

Covid-19对马来西亚造成了什么

2020年是充满风风雨雨的一年。事实上,影响整个世界的一件大事无疑是 Covid-19 大流行。毋庸置疑,疫情给经济、社会等诸多方面的发展带来了不小的波折,但在这种情况下,有一个迹象显示出明显的积极信号:环境的变化。


图 1 马来西亚首都吉隆坡晴朗天空的照片(照片:Filepic)。

根据来自 The Star 的 Ming Teoh 的马来西亚新闻报道,为应对 Covid-19 在马来西亚传播而实施的行动控制令 (MCO) 给该国带来了积极的环境影响(Teoh,2020 年)。人们惊叹于干净的河流、湛蓝的天空以及自然和野生动物的恢复。当然,由于行管令限制了很多人的活动,街道和城市道路比平时的噪音水平要安静得多。改善的噪音质量导致噪音污染降低,这使得动物群的声音更加明显。但是一旦解除行动管制令大家恢复正常生活,这种积极的环境状况还能持续多久呢?是否有足够的时间让环境正常恢复?


马来西亚能源、科学、技术、环境和气候变化部 (MESTECC) 环境部 (DOE)

马来西亚能源、科学、技术、环境和气候变化部(MESTECC)的环境部(DOE)一直非常关注这个问题,特别是该国的噪音质量。他们不断更新指南以处理各种应用的噪声或振动,例如车辆噪声、环境噪声或环境中的室外噪声源。在已发布的环境噪声限制和控制指南(2009 年)中,美国能源部指定了一张表格,显示不同应用的允许声级,如表 1 所示,作为指南中的示例之一(空气与噪声,2019 年) 。


表 1 能源部发布的指南中列出的允许声级示例。

允许的声级因应用(即土地使用、人口密度)和一天中的不同时间而异,以确保在声级测量期间考虑到各种条件的情况。例如,环境噪声限制设置为基于平均噪声水平的绝对限制(在指定时间段内不应超过),或者根据允许的噪声水平增加的相对限制关于背景水平。提到限制应始终与位置的环境噪声气候一致。指南中列出的其余噪声限制时间表包括土地使用、道路交通、铁路/运输列车、建筑和维护,这些是该国室外噪声的主要来源。

除此之外,该报告还涵盖了规划过程指南、噪声影响评估、噪声干扰量化以及通过规划和控制减轻环境噪声的指南。这些理想地应用于新的和现有的项目规划,其中项目可以涵盖任何涉及噪音的问题,作为潜在问题或需要测量和评估。这是能源部在国内加强噪音控制的一项非常必要的措施,致力于控制相关应用的噪音影响,从而克服马来西亚的噪音污染。通过采取和遵循这些行动,可以在不久的将来实现在该国保持更好的噪声质量的目标。

Written by:

Khei Yinn Seow

Mechanical Engineer

Geonoise Malaysia

khei@geonoise.asia 

References:

Air & Noise, P. S. C. S., 2019. Guidelines for Environmental Noise Limits and Control (Third Edition), Putrajaya: Department of Environment Malaysia.

Teoh, M., 2020. Blue skies, less waste: Covid-19 and the MCO’s effects on the environment., s.l.: The Star.

分类
Asia Noise News Building Acoustics Environment Industrial Vibration

印度尼西亚的建筑振动限制

各种人类活动和努力都会因振动的产生而扰乱周围环境。例如,建筑(例如打桩作业)、采矿等。这些振动会干扰附近居民的舒适度和健康,甚至会对周围建筑物造成损坏。

在印尼,振动水平标准由环境部国务部长第 12 号法令规定。 1996 年第 49 号法令。制定本法规是为了确保人类和其他生物的环境可持续性。因此,有必要规范因振动而可能干扰人类健康、其他生物和环境的企业或活动的影响,并控制与振动相关的污染和环境破坏。

在这些法规中,企业或活动的负责人必须:

  1. 符合所需的振动水平标准。相关许可证中规定了这一义务,以控制每项相关业务或活动的振动水平
  2. 安装防振装置
  3. 至少每三个月向州长、部长、负责环境影响管理的机构和负责相关活动的技术机构以及认为必要的其他机构提交一次振动水平监测结果报告。

标准振级本身分为几个部分,即:

  1. 原始振动水平确保舒适和健康
  2. 基于冲击损伤的机械振动标准等级
  3. 基于建筑物类型的机械振动标准水平
  4. 冲击振动标准等级

下表和图表是舒适和健康的标准振动水平:

换算:

加速度 = (2πf)2 × 位移

速度 = 2πf x 位移

上表的图形表示如下:

下表是基于破坏性影响的振动极限:

如上所示,振动的峰值速度限制分为 4 类:

  • A类:非破坏性
  • B 类:可能对抹灰造成破坏(裂缝,或者在某些情况下灰泥可能从墙上掉下来)
  • C 类:对承受载荷的结构部件可能具有破坏性
  • D 类:承重墙破坏的高风险

下图是以图形形式表示的基于破坏性影响的振动极限:

标准机械振动级别也可以根据建筑物类型进行划分。建筑物类型分为三种,即:

  1. 商业用途建筑物、工业建筑物及类似建筑物
  2. 设计和用途相似的住房和建筑物
  3. 对振动敏感的结构不像1号和2号那样,具有较高文化价值的建筑物,例如被保留的建筑物

以下是振动级别的标准值:

下表为建筑物的冲击极限:


级别建筑类型最大振动速度(mm/s
1具有较高历史价值的名称和古建筑2
2存在缺陷的建筑物,墙壁上可见裂缝5
3建筑物状况良好,灰泥上有轻微裂缝是可以接受的10
4结构强度高的建筑物(例如由混凝土和钢材制成的工业建筑)10 – 40

该法规还规定了测量和分析振动水平的方法如下:

  1. 使用的设备是:
    1. 振动传感器(加速度计或地震计)
    2. 振动计或振动分析仪
    3. 滤波器 1/3 倍频程或窄带(Filter 1/3 倍频程或窄带)
    4. 记录振动水平(水平或 X – Y 记录仪)
    5. 振动水平仪分析仪(FFT分析仪)
  2. 测量程序
    1. 振动带来舒适和健康:
      • 避振器放置在地板或振动表面上,并连接到配有滤波器的振动计
      • 测量装置安装在偏差大小处。如果该工具未配备此功能,则可以使用数量转换。
      • 对每个频率 4-63 Hz 进行读数和记录,或者通过振动记录仪进行扫描。
      • 13个数据的测量结果如图所示
    2. 整个建筑物的振动

      • 测量方法与人体舒适度和健康的振动测量相同,只是使用的量是峰值振动速度(峰值速度)。
    3. 如何评价
      • 图表中描绘的 13 个数据与振动水平的标准限值进行了比较。如果某一频率的振动超过规定的标准振动值,则称振动超过标准振动水平。振动等级标准分为a、b、c、d 4 级。

定义

1996年环境部长第49号法规中使用的定义如下

  1. 建筑结构是建筑物的一部分,经过规划、计算和旨在:
    • 支持各种负载(恒负载、活负载和临时负载)
    • 注重坚固、刚性、可靠的要求,保证建筑整体的稳定性。例如:刚架结构(框架)、承重墙结构(承重墙)
  2. 结构构件是建筑结构的一部分,保证结构的功能。例如:框架的梁、柱、板。
  3. 承重墙是垂直平面形式的建筑结构,用于支撑其上方的荷载,例如楼板或屋顶。
  4. 非结构是建筑物的一部分,未规划或未用于支撑荷载。例如:隔断墙、窗/门框。

结构性和非结构性损坏的影响:

  1. 结构损坏,会危及建筑物的稳定性,甚至倒塌。 (例如,柱桩可能会导致建筑物倒塌)。
  2. 非结构性破坏,不会危及建筑物的稳定性,但会危及居住者的安全(例如:隔墙倒塌,不会使建筑物倒塌,但会伤害居住者)。

结构损坏程度:

  1. 轻微损坏是指不会危及建筑物稳定性并且可以在不降低其强度的情况下修复的损坏。
  2. 中度损坏是指会降低结构强度的损坏。要恢复到原来的状态,必须进行额外的加固。
  3. 严重损坏是指危及建筑物并可能导致建筑物倒塌的损坏。

撰写者:

Hizkia Natanael
Acoustic Engineer
Phone: +6221 5010 5025
Email: hizkia@geonoise.asia

分类
Asia Noise News Building Accoustics Environment Industrial

工业噪声水平预测(石油和天然气、发电、加工等)

大多数工业活动都会产生噪音,对环境及其工人有害。为了最大限度地减少这种影响,政府、协会和公司制定了法规、标准和规范来设定工厂内允许的噪音。在很多情况下,规划阶段中,工厂业主和项目管理层希望确保噪音水平是可以接受的。由于工厂尚未建成,可以做的是创建噪声模型来模拟工厂,以便预测噪声水平。在本文中,我们将探讨如何做到这一点。

我们首先要知道的是工厂内部的噪声源会发出多少噪声。噪声源通常用两种方式描述:声功率级(Lw 或 SWL)和一定距离内的声压级(Lp 或 SPL),最常见的是 1 m 距离内的声压级(Lp 或 SPL)。有多种方法可以获取某些噪声源的信息——首先,如果选择了设备类型和型号,设备制造商通常会在其数据表中报告噪音水平。然而,大多数噪声预测通常并非如此,因为噪声研究通常是在指定设备供应商之前完成的。因此,预测噪声排放的第二种方法是遵循研究人员开发的经验公式。您可以在一些教科书、期刊和论文中找到此类公式。对于旋转部件,您需要其额定功率和转速才能估算噪声排放。

例如,在3000-3600rpm的转速范围内,驱动电机功率在75kW以上的泵的噪声水平可以使用以下公式进行预测:

假设水泵转速为3000rpm、100kW,根据公式可估算出距水泵1m处的噪声级为92dB。假设噪声源可以视为地面上的点源(半球传播),则泵的声功率级可以使用以下公式计算:

其中 r 是从源到接收器的距离。

在这种情况下,预测的 Lw 将为 100 dB。

第三,也可以选择对类似设备进行噪声测量,以确定新设备的噪声水平。另一种选择是,在某些国家/地区,某些设备有噪音排放限制,如果该限制适用于您的项目,您可以使用该限制。

获得所有噪声源的 Lw 后,我们要计算接收器处的噪声水平(Lp)。可以遵循一些标准来计算此值。其中很少有 ISO 9613-2、NORD 2000、CNOSSOS EU 等。大多数标准考虑了一些计算因素,例如距离、大气吸收、地面反射、屏蔽效应(障碍物和障碍物)以及其他因素,例如植被、工业场地等的体积吸收。大多数顾问和项目都需要SoundPLAN 等软件进行此计算。

根据项目的不同,有几种类型的噪声限制需要确保合规。最常见的是环境噪声限值、噪声暴露限值、区域噪声限值和绝对噪声限值。此外,还对紧急情况下的噪音水平进行了建模,以便该信息可用于安全和 PAGA(公共广播和一般警报)研究。

环境噪声限值通常根据工厂对工厂边界以及工厂附近的住宅和学校等最近的敏感接收器的贡献来计算。如何获取该信息取决于适用于厂区的法规。例如,在印度尼西亚,住宅区的噪音限值为 Lsm 55 dBA,工业区的噪音限值为 Lsm 70 dBA。 Lsm 与 Ldn 类似,但夜间噪声级附加值为 5 dB,而不是大多数其他国家(尤其是欧洲国家)使用的 10 dB 附加值。为确保符合本规定,围栏处的噪声水平应低于 Lsm 70 dBA,假设附近有住宅区,则该场地的贡献应低于 55 dBA。还建议测量敏感接收器处的现有噪声水平,以使研究更贴近实际情况。

噪声暴露限值是指工人在工作期间受到噪声的最大暴露量。在印度尼西亚,8 小时工作噪音暴露限值为 85 分贝。要更改工作时间,使用 3 dB 汇率。例如,如果工厂的噪音水平为88分贝,那么工人只能在那里工作4小时,如果是91分贝,那么时间限制为2小时,依此类推。要延长在嘈杂区域的工作时间,可以选择通过减少源头的噪音排放或传输过程中的噪音控制(例如使用屏障)来实际降低噪音水平,或者使用听力保护装置(HPD)来降低噪音水平。耳塞、耳罩等工人。使用 HPD 后工人的噪声暴露可使用以下公式计算:


其中 NRR 是 HPD 的降噪等级(以 dB 为单位)。

不同的区域可能有不同的噪声水平限制,因此区域噪声限制很有用。例如,在无人机械室中,噪声水平可能很高,例如 110 dBA。然而,在现场办公室内部,允许的噪音水平要低得多,例如 50 dBA。应计算该噪声水平以确保符合噪声限值。不同的公司可能对此有不同的限制,以确保员工的健康和生产力。如果该区域位于室内且噪声源位于室外,则可以使用 ISO 12354-3 等标准来估计内部噪声水平。

绝对噪声限值是工厂允许的最高噪声水平,任何时候都不得超过,包括紧急情况。在大多数情况下,脉冲声的绝对噪声限值为 140 dBA。为了确保符合此要求,应计算潜在的高水平噪声,例如安全阀。

紧急情况下,会启动与正常情况不同的噪声源,如火炬、排污阀、消防泵等设备。在这种情况下,工厂内的工人必须能够听到警报和公共广播系统的声音。通常,PAGA 系统的 SPL 目标应比噪声水平高 10 dB 以上。因此,应了解各区域紧急情况下的噪声水平。

Written by:

Hizkia Natanael
Acoustic Engineer
Phone: +6221 5010 5025
Email: hizkia@geonoise.asia

分类
Asia Noise News Building Accoustics Environment Industrial

工业噪声水平预测(石油和天然气、发电、加工等)

大多数工业活动都会产生噪音,对环境及其工人有害。为了最大限度地减少这种影响,政府、协会和公司制定了法规、标准和规范来设定工厂内允许的噪音。在很多情况下,规划阶段中,工厂业主和项目管理层希望确保噪音水平是可以接受的。由于工厂尚未建成,可以做的是创建噪声模型来模拟工厂,以便预测噪声水平。在本文中,我们将探讨如何做到这一点。

我们首先要知道的是工厂内部的噪声源会发出多少噪声。噪声源通常用两种方式描述:声功率级(Lw 或 SWL)和一定距离内的声压级(Lp 或 SPL),最常见的是 1 m 距离内的声压级(Lp 或 SPL)。有多种方法可以获取某些噪声源的信息——首先,如果选择了设备类型和型号,设备制造商通常会在其数据表中报告噪音水平。然而,大多数噪声预测通常并非如此,因为噪声研究通常是在指定设备供应商之前完成的。因此,预测噪声排放的第二种方法是遵循研究人员开发的经验公式。您可以在一些教科书、期刊和论文中找到此类公式。对于旋转部件,您需要其额定功率和转速才能估算噪声排放。

例如,在3000-3600rpm的转速范围内,驱动电机功率在75kW以上的泵的噪声水平可以使用以下公式进行预测:

假设水泵转速为3000rpm、100kW,根据公式可估算出距水泵1m处的噪声级为92dB。假设噪声源可以视为地面上的点源(半球传播),则泵的声功率级可以使用以下公式计算:

其中 r 是从源到接收器的距离。

在这种情况下,预测的 Lw 将为 100 dB。

第三,也可以选择对类似设备进行噪声测量,以确定新设备的噪声水平。另一种选择是,在某些国家/地区,某些设备有噪音排放限制,如果该限制适用于您的项目,您可以使用该限制。

获得所有噪声源的 Lw 后,我们要计算接收器处的噪声水平(Lp)。可以遵循一些标准来计算此值。其中很少有 ISO 9613-2、NORD 2000、CNOSSOS EU 等。大多数标准考虑了一些计算因素,例如距离、大气吸收、地面反射、屏蔽效应(障碍物和障碍物)以及其他因素,例如植被、工业场地等的体积吸收。大多数顾问和项目都需要SoundPLAN 等软件进行此计算。

根据项目的不同,有几种类型的噪声限制需要确保合规。最常见的是环境噪声限值、噪声暴露限值、区域噪声限值和绝对噪声限值。此外,还对紧急情况下的噪音水平进行了建模,以便该信息可用于安全和 PAGA(公共广播和一般警报)研究。

环境噪声限值通常根据工厂对工厂边界以及工厂附近的住宅和学校等最近的敏感接收器的贡献来计算。如何获取该信息取决于适用于厂区的法规。例如,在印度尼西亚,住宅区的噪音限值为 Lsm 55 dBA,工业区的噪音限值为 Lsm 70 dBA。 Lsm 与 Ldn 类似,但夜间噪声级附加值为 5 dB,而不是大多数其他国家(尤其是欧洲国家)使用的 10 dB 附加值。为确保符合本规定,围栏处的噪声水平应低于 Lsm 70 dBA,假设附近有住宅区,则该场地的贡献应低于 55 dBA。还建议测量敏感接收器处的现有噪声水平,以使研究更贴近实际情况。

噪声暴露限值是指工人在工作期间受到噪声的最大暴露量。在印度尼西亚,8 小时工作噪音暴露限值为 85 分贝。要更改工作时间,使用 3 dB 汇率。例如,如果工厂的噪音水平为88分贝,那么工人只能在那里工作4小时,如果是91分贝,那么时间限制为2小时,依此类推。要延长在嘈杂区域的工作时间,可以选择通过减少源头的噪音排放或传输过程中的噪音控制(例如使用屏障)来实际降低噪音水平,或者使用听力保护装置(HPD)来降低噪音水平。耳塞、耳罩等工人。使用 HPD 后工人的噪声暴露可使用以下公式计算:

其中 NRR 是 HPD 的降噪等级(以 dB 为单位)。

不同的区域可能有不同的噪声水平限制,因此区域噪声限制很有用。例如,在无人机械室中,噪声水平可能很高,例如 110 dBA。然而,在现场办公室内部,允许的噪音水平要低得多,例如 50 dBA。应计算该噪声水平以确保符合噪声限值。不同的公司可能对此有不同的限制,以确保员工的健康和生产力。如果该区域位于室内且噪声源位于室外,则可以使用 ISO 12354-3 等标准来估计内部噪声水平。

绝对噪声限值是工厂允许的最高噪声水平,任何时候都不得超过,包括紧急情况。在大多数情况下,脉冲声的绝对噪声限值为 140 dBA。为了确保符合此要求,应计算潜在的高水平噪声,例如安全阀。

紧急情况下,会启动与正常情况不同的噪声源,如火炬、排污阀、消防泵等设备。在这种情况下,工厂内的工人必须能够听到警报和公共广播系统的声音。通常,PAGA 系统的 SPL 目标应比噪声水平高 10 dB 以上。因此,应了解各区域紧急情况下的噪声水平。

分类
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

分类
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

分类
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

分类
Asia Noise News

狗也会出现听力损失


就像人类一样,狗有时天生听力受损,或者由于疾病、炎症、衰老或暴露于噪音而导致听力损失。伊利诺伊大学厄巴纳分校兽医神经学家兼兽医临床医学教授卡里·福斯 (Kari Foss) 博士表示,狗主人和 K-9 饲养员在收养或照顾狗以及将狗带入嘈杂的环境时应牢记这一点。

在《伴侣动物医学主题》杂志上的一份新报告中,福斯和她的同事描述了三种工作犬的听力损失案例:猎犬、嗅探犬和警犬。三人中的一人患有永久性听力损失,其中一人对治疗有反应,第三人没有返回最初诊断的机构进行后续护理。

案例研究表明,那些与警察或猎犬一起工作的人“应该意识到狗靠近枪声,并可能考虑采取听力保护措施,”福斯说。市场上有几种类型的狗听力保护装置。

就像人类一样,大声的噪音会损害狗的中耳和内耳的脆弱结构。

福斯说:“最常见的是,噪音引起的听力损失是由于耳蜗中响​​应声波而振动的毛细胞受损造成的。” “然而,极端的噪音也可能会损坏耳膜和内耳内的小骨头,称为小骨。”

宠物主人或训犬师往往会注意到动物何时停止对声音或命令做出反应。然而,人们很容易错过这些迹象,特别是对于有一只或多只犬类伴侣的狗,福斯说。

“对于患有先天性耳聋的小狗,直到将小狗从窝里移走之前,可能不会注意到这些迹象,”她说。

福斯说,狗听力损失的症状包括在呼唤时无法做出反应、在通常会吵醒它们的声音中入睡、被以前不会打扰它们的巨大噪音吓到、过度吠叫或发出不寻常的声音。一只耳朵聋的狗可能会对命令做出反应,但可能很难找到声音的来源。

福斯说,如果宠物主人认为他们的宠物患有听力损失,他们应该让兽医对动物进行评估。由耳部感染、炎症或中耳息肉引起的听力损失可以得到治疗,并且在许多情况下可以得到解决。

福斯说,听力受损或失聪的狗可能会错过周围环境潜在威胁的线索。

“它们很容易受到未被发现的危险的影响,例如机动车辆或掠食者,因此在外出时应该受到监控,”她说。

福斯说,如果听力损失是永久性的,狗主人可以找到适应方法。

“主人可以使用眼神交流、面部表情和手势来与宠物交流,”她说。 “零食、玩具奖励和关爱会让狗对训练保持兴趣。”闪烁的灯可用于指示宠物进来。

福斯说,听力损失似乎不会影响狗的生活质量。“患有先天性听力损失的狗在成长过程中完全没有意识到它们与其他狗有任何不同,”她说。 “在以后的生活中失去听力的狗可能会更敏锐地意识到自己的听力损失,但它们适应得很好。嗅觉丧失对狗的生活的影响比听力丧失的影响要大得多。”

Written by:

Pitupong Sarapho (Pond)
Acoustical Engineer

Geonoise (Thailand) Co., Ltd.
Tel: +6621214399
Mobile: +66868961299
Email: pond@geonoise.asia

 

Credit: Diana Yates, University of Illinois at Urbana-Champaign

分类
Asia Noise News Building Accoustics

铁路噪音

铁路运输或火车运输是当今主要的运输方式之一,用于运送旅客和货物。人们每天都会乘坐地铁系统、轻轨交通和其他类型的轨道交通形式的火车上下班和回家。这些类型的系统会对火车内的乘客以及环境产生噪音。在本文中,我们将讨论我们每天在火车内外听到的噪声源成分。

如果我们在火车上注意噪音,就会发现我们能听到的噪音源不止一种。列车车内噪声的主要来源是紊流边界层噪声、空调噪声、发动机/辅助设备噪声、滚动噪声和转向架气动噪声,如下图所示。

顺便说一句,我们编写并录制了雅加达地铁的声音。您可以查看下面的链接,帮助您更好地想象火车的情况。

Exploring Jakartan Public Transportation Through The Sound

滚动噪声是由轮雨接触处引起的轮轨振动引起的,是铁路噪声中最重要的组成部分之一。这种类型的噪音取决于车轮和轨道的粗糙度。两个部件的表面越粗糙,列车内部和外部的噪音水平就会越高。为了能够根据滚动噪声估计空气传播分量,我们必须考虑车轮和轨道的特性以及粗糙度。

另一种对铁路噪声影响很大的噪声成分是空气动力噪声,它可能由多个来源引起。这些类型的源对内部噪声和外部噪声的贡献可能不同。例如,在较低速度下,空气动力噪声对内部噪声的影响相当大,而对于外部噪声,如果火车速度相对较低,则空气动力噪声的贡献不大。例如,美国联邦铁路管理局(美国交通部)撰写的报告指出,空气动力源在时速约 180 英里(约 290 公里/小时)时开始产生显着噪音。低于该速度,外部噪声计算时仅考虑滚动噪声和推进/机械噪声。除了外部噪声之外,机械噪声也会影响内部噪声水平。该类别包括发动机、电动机、空调设备等。

为了进行铁路噪声测量,通常遵循几个步骤。对于火车经过噪声的测量,通常使用 ISO 3095 声学 – 铁路应用 – 测量轨道车辆发出的噪声。该标准共三版,首版于1975年发布,2005年、2013年再次修改批准。列车通过时常用的衡量标准有最大声级(LAmax)、声暴露级(SEL)和过境暴露级(电话)。

对于内部噪声,ISO 3381 铁路应用 – 声学 – 轨道车辆内部噪声测量中指定了常用的测试程序。该程序规定了几种不同条件下的测量,例如匀速列车、静止加速列车、减速车辆和静止车辆的测量。

Written by:

Hizkia Natanael

Acoustical Design Engineer

Geonoise Indonesia

hizkia@geonoise.asia

 

Reference:

D. J. Thompson. Railway noise and vibration: mechanisms, modelling and means of control. Elsevier, Amsterdam, 2008

Federal Railroad Administration – U.S. Department of Transportation, High-Speed Ground Transportation Noise and Vibration Impact Assessment. DOT/FRA/ORD-12/15. 2012

 

分类
Asia Noise News

声波在水下如何工作?

 

你知道吗?

声学不仅涉及声音在空气中的传播,还涉及声音在水中的传播。研究声音传播及其在水中的表现的学科称为水下声学。水下声学是科学的一个分支,它已经成为自第一次世界大战以来一直使用的技术。甚至在此之前,1490年,列奥纳多·达·芬奇在一篇文章中阐述了他的理论“如果你将你的船停在海洋中并你把一根长管的一侧放入水中,然后把耳朵放在另一侧,你就能从很远的地方听到船的声音。”这表明水声技术早已为人所知。

在第二次世界大战中,在军事案例中,水声学被用作通信平台,通过水传递信息。 1925年,水声学被用来根据获得的声波来测量海洋深度——它的用途之一就是找到坠入海底的飞机。随着时间的推移,许多技术被开发出来并进行了研究。

探鱼器导航工具也是渔民可以使用的应用程序之一。这些工具可用于渔民寻找海洋中的鱼群。我们还可以根据传播的声音的频率范围知道鱼群距船舶的距离和位置。

在工业中,水声学已被应用于确定海洋中石油和天然气的存在。使用的方法非常有效且高效。在灾害管理中,基于从海底检测到的次声波的传播,开发了海上海啸的早期检测。近年来,一项引起许多研究兴趣的技术是自主水下航行器(AUV)。 AUV是一种无人水下航行器,AUV可以识别水下生物和物理。使用AUV可以成为识别近岸水域形状状况的最佳选择,因为它可以长期运行。此外,使用AUV还可以避免对珊瑚礁和海洋生态系统的破坏。

水下研究的必要性相当高,特别是对于像印度尼西亚这样拥有广阔海洋的国家。采矿作业、珊瑚礁观测、海上石油勘探和海上事故需要水下声学研究。

波速是振动穿过介质的速率。声音在水中的传播速度比在空气中更快且传播距离更远,因为水的机械特性与空气不同。我们知道,声波在空气中传播的速度在333m/s到340m/s之间,声波在水中的传播速度是声波在空气中的传播速度的四倍。声波在水中的传播速度为 1500 m/s 至 1520 m/s。我们知道声音传播是由于介质中粒子的上下运动而发生的。在海上,海水深度越深,压力就越高。高压水粒子将被压缩,以便它们继续传播声音而不会损失太多能量。此外,水中的密度比空气中的密度高。这导致声音可以在水中快速传播且传播得很远。不幸的是,海水中的声速不是一个恒定值。随地点、季节、早晚以及水深的不同,其变化幅度很小(百分之几)。尽管声速的变化并不大,但它们对声音在海洋中的传播方式具有重要影响。然而,海水的温度也会影响声波的速度,温水比冷水传播得更快、更远。

根据温度的不同,海洋分为三层,即混合水、温跃层和深水。在温跃层中,温度从海洋的混合上层到更冷的深水迅速降低。在温跃层中,声波的速度随着海水的深度而减小。在温跃层以下的层中,温度再次恒定,压力增加。在这一层中,声波的速度再次随着海水深度的增加而增加。

Temperature ⇢


众所周知,波长与频率成反比。

从以上公式中可以看出,频率越低,波长越长。因此,20 Hz 声波在水中的长度为 75 m,而 20 Hz 声波在空气中的长度仅为 17 m,通常用于捕获水下声音的传感器是水听器或水下麦克风。

分贝作为声压的单位,是压力测量值与参考压力之间的比率。请注意,空气中的参考压力与水是不同的。因此,水中 150 分贝的声音与空气中 150 分贝的声音不同。在空气中,参考压力为20μPa,在水中,参考压力为1μPa。根据声压级方程,空气中的 dB 到水中的换算值为

水的特性阻抗约为空气的3600倍


因此,空气与水的换算系数为


例如,如果喷气发动机在空气中的声音为 135 分贝,那么在水中的声音为 197 分贝。

Written by:

Adetia Alfadenata

Acoustic Engineer

Geonoise Indonesia

support.id@geonoise.asia

 

Reference:

  • Urick, Robert J.1983.” Principal of Underwater Sound/3rd Edition”.McGraw-Hill Book Company
  • Nieukirk, Sharon.” Understandig Ocean Acoustic”.NOAA Ocean explorer Webmaster
  • Singh H, Roman C, Pizarro O, Eustice R. Advances in High Resolution Imaging from Underwater Vehicles. In: Thrun S, Brooks R, Durrant-Whyte H, editors. Robotics Research. vol. 28 of Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg; 2007. p. 430–448
  • Pike, John.  “Underwater Acoustic”. Diakses secara online melalui https://fas.org/man/dod-101/sys/ship/acoustics.htm
  • Discovery of Sound in the Sea.”How does sound in air differ from sound in water?” diakses secara online melalui https://dosits.org/science/sounds-in-the-sea/how-does-sound-in-air-differ-from-sound-in-water/
USAThailandChinaIndonesiaVietnam